Determine the z-scores of the largest and smallest values in each… Determine the z-scores of the largest and smallest values in each column. The report should include the two columns of data, a scatter plot of the data along with the regression line. State the regression coefficient, and what the coefficient of determination says about the correlation. Comment about the level of significance of the correlation. (Look at the P-value of the slope.) Interpret the slope of the line in the con of the data, and of the y-intercept, if it makes sense to do so, or state why it doesn’t. Demonstrate that the point ( – x , – y ) satisfies the linear equation. Finally, determine the largest residual value. – Fitted line R. 850 800 750+ 700 650 600 120 140 160 180 200 220 240 260 HR… Show moreSimple linear regression results:Dependent Variable: RIndependent Variable: HRR = 374.83476 + 1.8110628 HRSample size: 30R (correlation coefficient) = 0.78563267R-sq = 0.6172187Estimate of error standard deviation: 44.229096Parameter estimates:ParameterEstimateStd. Err.AlternativeDFT-StatP-valueIntercept374.8347654.010337? 0286.9400558<0.0001Slope1.81106280.26953199? 0286.719287<0.0001Analysis of variance table for regression model:SourceDFSSMSF-statP-valueModel188320.70488320.70445.148818<0.0001Error2854773.9631956.213Total29143094.67This is the Data used....RHR679144790239659195829219705210796190786222717203739182697179863221686163723190830237623158738194729228636176711222743199734198609124729180697199804241706198857222625167846262MathStatistics and Probability MATH 153

Order your essay today and save 20% with the discount code ESSAYHELP